Automated Recommendation of Healthy, Personalised Meal Plans

Morgan Harvey\(^1\) David Elsweiler\(^2\)
\(^1\)Northumbria University, Newcastle, United Kingdom
\(^2\)University of Regensburg, Germany
e-mail: morgan.harvey@northumbria.ac.uk, david@elsweiler.co.uk

ABSTRACT
Poor health due to a lack of understanding of nutrition is a major problem in the modern world, one which could potentially be addressed via the use of recommender systems. In this demo we present a system to generate meal plans for users which they will not only like, based on their taste preferences, but will also conform to daily nutritional guidelines. The interface allows the selection of recipes for breakfast, lunch and dinner and can automatically complete a daily meal plan or can generate entire plans itself.

Keywords
Health, Recommender Systems, Planning, Prevention

1. INTRODUCTION AND MOTIVATION
Poor dietary habits are a major cause of today’s world health problems, however lifestyle-related illnesses can be prevented and sometimes even reversed through good nutrition \([1]\). Since people often lack the requisite knowledge to implement positive changes \([2]\) food recommender systems (RS) have been touted as a potential means to assist people in nourishing themselves more healthily \([3]\).

Food RS make sense as part of a strategy for behavioural change as suggesting a change that is less painful, i.e. based on something the user might like, is more likely to be accepted and followed. Recommenders are likely to be effective at predicting which changes will be painful or not but they have a serious drawback when aiming for positive change: they learn user preferences for ingredients and food styles. This leads to users who like fat- and calorie-laden meals being recommended fat- and calorie-laden meals \([3]\) - an outcome not conducive to improving nutritional habits.

This demo presents a web-based system able to automatically create daily meal plans for users. It does so by calculating the nutritional requirements of the user based on their personal personas (age, gender, height, etc.) and, using the top recommendations given by a state-of-the-art recipe recommendation algorithm \([3]\), attempts to generate a plan which corresponds to guidelines published by international health agencies. The planner is designed to form part of a larger web site where users can share, rate, search and browse recipes. After rating recipes, the user can receive recommendations of other recipes they might like and can even submit their own. The nutritional properties of the recipes are automatically estimated by the system using a state-of-the-art algorithm \([4]\).

2. SYSTEM ARCHITECTURE
Figure 1 shows the main components of, and flow of data within, the meal planning system. The user first provides information about their tastes by rating a number of recipes via a typical 5 star rating paradigm. After rating recipes, the user can receive recommendations of other recipes they might like and can even submit their own. The nutritional properties of the recipes are automatically estimated by the system using a state-of-the-art algorithm \([4]\).
RS detailed in [3]. The user also provides information about their height, weight, age, daily activity level and goal (to lose, gain or maintain weight). This is the user’s persona and is an input to the planning algorithm and used to calculate their nutritional needs.

We calculate nutritional requirements using a version of the Harris-Benedict equation revised by Roza and Shizgal [5] which estimates an individual’s basal metabolic rate (BMR) and daily calorie requirements. The estimated BMR value is multiplied by a number between 1.2 and 1.9 corresponding to the individual’s activity level giving a recommended daily energy intake to maintain current body weight. We add or remove 500 kcal for individuals who wish to gain or lose weight which would result in the safe gain or loss of 0.45 kgs per week. We assume that 20% of the required energy will come from drinks and between-meal snacks and use standard measures for the proportion of calories that should come from proteins, fats, carbohydrates and fibres.

The RS generates predicted ratings for as yet unrated recipes and sends a ranked list of these (along with the recipes the user rated 4 or 5) to the planner. We can create plans for a given user (persona-profile combination) by first taking the top x recommendations from the RS for the taste profile. This set of recipes is then split into two separate sets, one for breakfasts and one for main meals. A full search is performed to find every combination of these recipes in the sequence [breakfast, main meal, main meal] which meets the target nutritional requirements defined above. Combinations with the same meals cannot be repeated, e.g. [R1, R2, R3] and [R1, R3, R2] are treated as only one plan.

The planner calculates the nutritional needs of the user based on the persona and attempts to build plans from the top x recommended recipes that can combine to provide all of the user’s daily needs within an error margin of 10%. These plans are outputted for the user to evaluate and use. Note that it is also possible for the user to directly choose 1 or 2 meals for a plan and in this case the planner must complete the plan by filling in the blank meals (not shown).

3. SUMMARY

This demo presents a first attempt at incorporating health and nutrition into the food recommendation problem by generating meal plans. This shows it is possible to combine recommended recipes into balanced meal plans according to nutritional guidelines.

4. REFERENCES

Description
The demo application presents the full recipe website interface allowing users to browse and search for recipes, rate recipes and even submit their own recipes to the system. At any time the user can add recipes to their meal plan and have the planner generate a set of plans for them. Plans can contain user-selected recipes or be generated entirely by the planning system without any user input.

Users can also alter their person information within the web application, allowing them to input data such as their height, age and daily activity level. Changing these values will affect the daily nutritional requirements as calculated by the system and will, therefore, have a knock-on effect on the plans generated.

The web application will be made freely available online so that conference delegates can try it out at their own leisure after the conference is over.

Setup and presenter
As the system is web-based (and therefore the majority of the work is done by a remote server), the only equipment required will be a basic computer/laptop with an internet connection and a large display for showing the demo to delegates. The demo will be presented by one of the demo’s authors who has worked on the nutrition project this work is drawn since its inception in 2012.